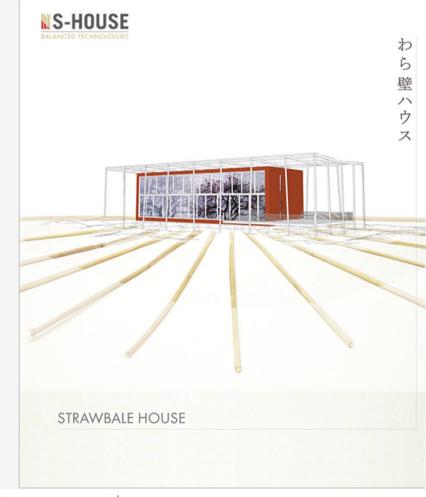


LIFE CYCLE HABITATION

DI (FH) Sören Eikemeier

GrAT (Center for Appropriate Technology)
Vienna University of Technology
Wiedner Hauptstraße 8 -10
A- 1040 Vienna, Austria
+43 1 58801 740064
se@grat.at



Content

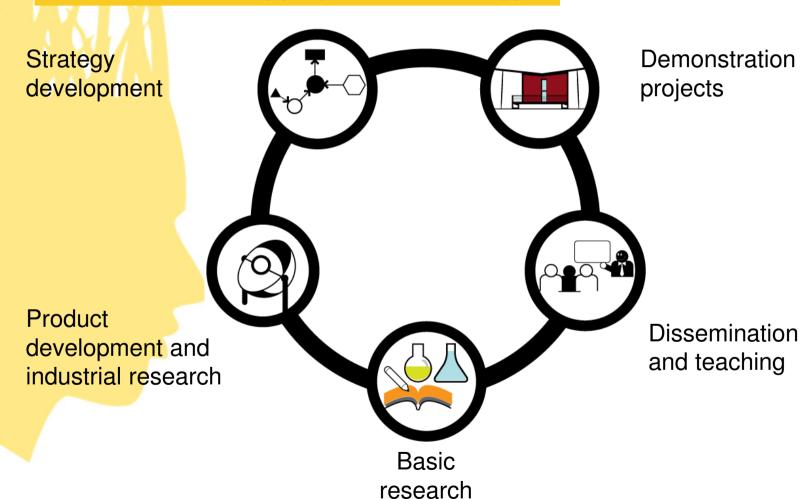
- GrAT
- Strategies
 - Straw bales and S-House
 - Innovative constructions
 - Energy concept
- Life Cycle Habitation

GrAT – Center for Appropriate Technology

Headquarter at TU Vienna

Branch office in Böheimkirchen, NÖ, Austria Branch office in Manila, the Philippines

Branch office in Kathmandu, Nepal



GrAT – Center for Appropriate Technology

Expertise & key projects

Renewable-based materials

Straw bale insulation

Bio-polymer

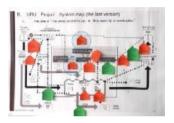
Bio-composite

Sustainable building

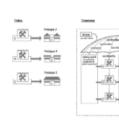
Straw bale building "S-House"

Zero Carbon Village

Renewable energy



Energy self sufficiency "Zero Carbon Resorts"

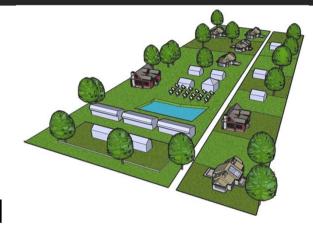


"Zero CO2 Cooler"

System solutions for sustainability

Product Service Systems (PSS) for green business

"Virtual Factory"



New project:

Life Cycle Habitation

LIFE+ Environment Policy and Governance

Modular prefabrication

Energy self-sufficient

Sust. building materials

S-HOUSE: Office- and exhibition building

Building procedures/key innovations

Extraction of clay plaster

Membrane roof

Footing

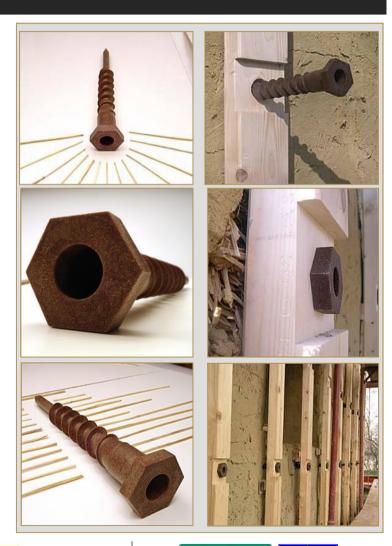
Straw bale wall construction

Ventilated base plate

Clay plaster

Wooden wall construction

Wooden exterior wall



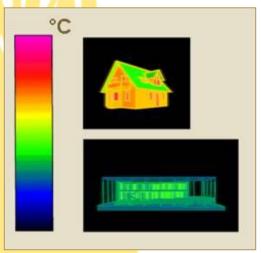
Treeplast screw

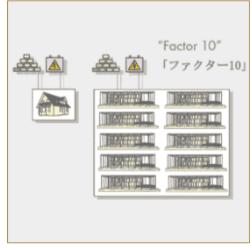
- Injection moulded
- Biopolymer
- Straw bale layer mounting
- 100% biodegradable (not by water)
- made of wood-based material (lignine)

WOOD instead of METAL

Overall concept

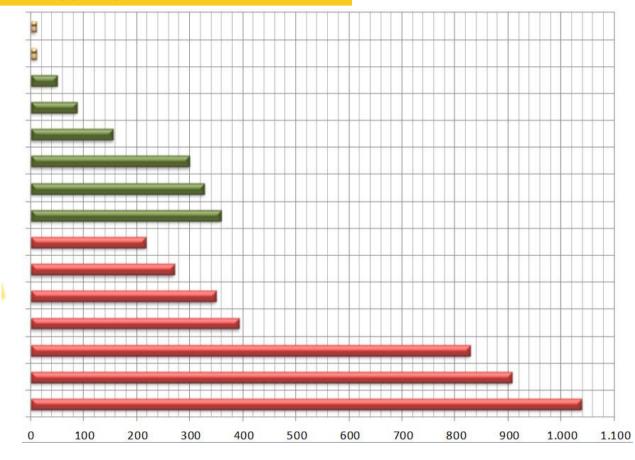
- Consistent use of renewable resources
- New developed fastening system
- Demolition concept
- Possibility for re-use and recycling
- High thermal insulation
- Optimized system for pipes and wires
- Biomass back-up stove
- Natural colours
- Efficient control system
- Granite floor as thermal storage
- Solar collectors for domestic hot water
- •





Passive house (Factor 10+)

- Reduction of energy and materials consumption
- Promotion of the use of renewable energy sources
- Consideration of user comfort
- Improvement of quality of life in the region
- Comparable costs to those of conventional building construction



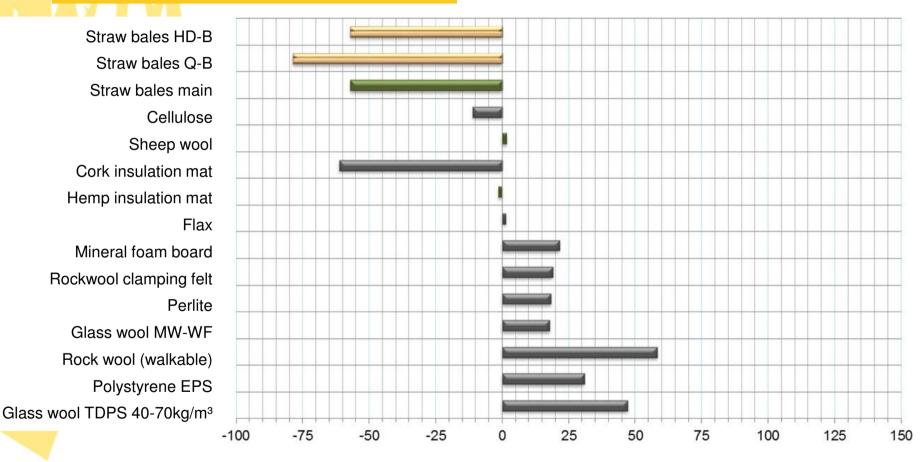
PEI – Primary Energy Input, non renewable

Straw bales HD-B
Straw bales Q-B
Straw bales main
Cellulose
Sheep wool
Cork insulation mat
Hemp insulation mat
Flax
Mineral foam board
Rockwool clamping felt
Perlite

Glass wool MW-WF Rock wool (walkable) Polystyrene EPS

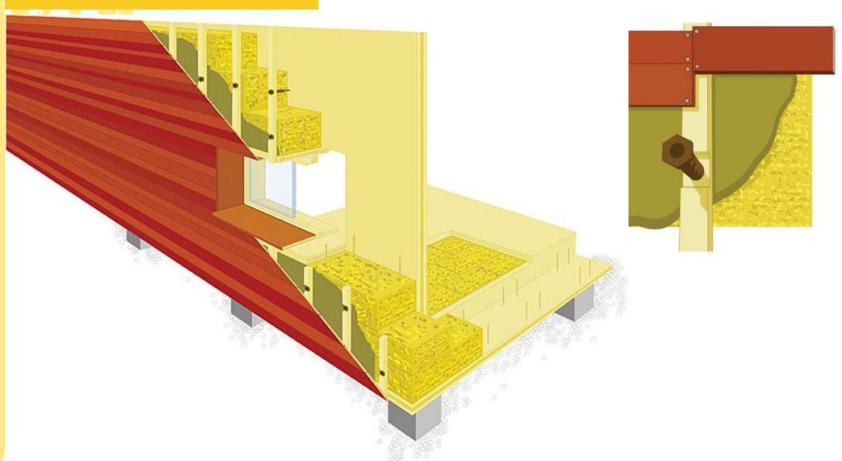
Glass wool TDPS 40-70kg/m³

PEI in MJ/m² (referred to a heat transfer resistance of 8.75 m²K/W)



GWP – Global Warming Potential

GWP - Global Warming Potential kg CO2eq/m² (referred to a heat transfer resistance of 8.75 m²K/W)



Innovative constructions

Wall structure and fixing – S-House

Recycling strategy

Wood-straw				Material	Thermal			
wall construction	Useful life	Composting	Product recycling	recycling	utilization	Disposal	Additives	Regional
							very small	
						possible after	proportion of	
				further use -> e.g.		thermal pre-	binder materials	
CLT-wood	100	no	re-use	chipboards	yes - 18 MJ/kg	treatment	(PUR adhesive)	yes
				further use				
				(opening, if				
			re-use (if necessary	necessary baling)		possible after		
		yes (after	cutting/tying ->	-> straw bales,		thermal pre-	thread (hemp,	
straw bales	50	opening)	insulation material)	fertilizer, bedding	yes - 17,5 MJ/kg	treatment	sisal, PP)	yes
						disposal		
				further use		category 3		
		yes (if only	re-use (moistening	(moistening with		possible (but		
		natural	with water, cleaning	water) -> new		usually	hemp, flax etc.	
clay plaster	100	additives)	-> clay plaster)	clay products	not possible	composting)	possible	yes
wooden laths						possible after		
(timber, planed, tech.				further use -> e.g.		thermal pre-		
dried)	60	yes	re-use	chipboards	yes - 18 MJ/kg	treatment	-	yes
						possible after		
wooden fasade				further use -> e.g.		thermal pre-		
(timber, rough, air dry)	60	yes	re-use	chipboards	yes -18 MJ/kg	treatment		yes

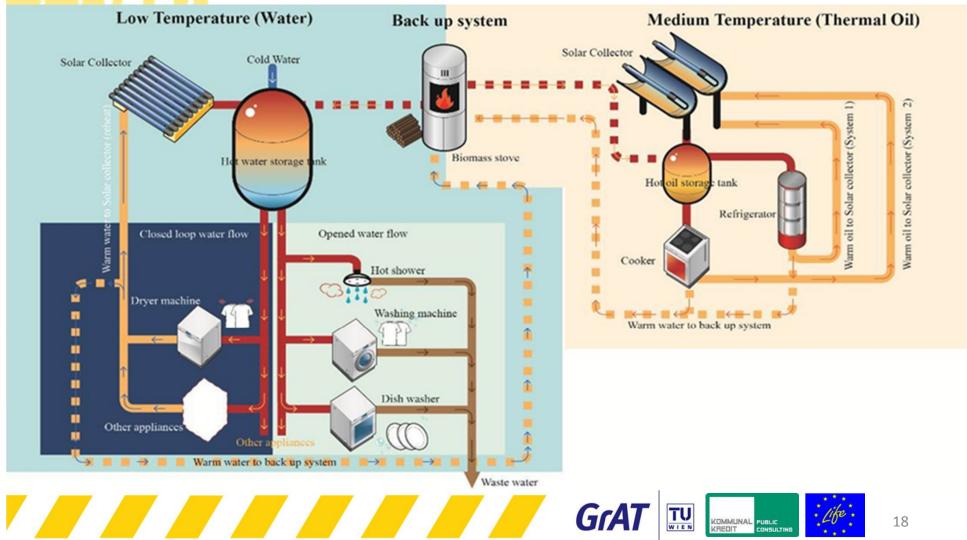
Modular prefabrication

- "Straw hotel", Nax, Switzerland
- Prefabricated wall elements
- Mounting of insulation layer in factory
- Interior finish on construction site

Zero Carbon Village project

Modular mass production

- "Straw hotel" sleeping rooms
- Prefabricated modular units
- Housing technology completely integrated
- Mounting of straw bales on construction site



Energy concept

Low temperature system

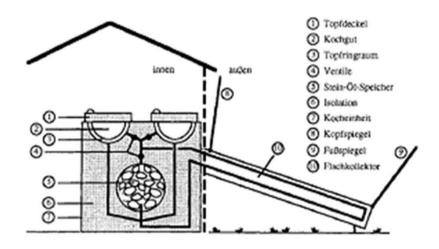
Open loop:

- Washing machine
- Dishwasher

Closed loop

- Tumble dryer
- Hair dryer

Monitoring system



Medium temperature – solar cooker

- Prototype for community centre
- Concept of Prof. Schwarzer,
 Solar institute Jülich, Germany
- Thermo-syphon operation
- Stone-oil heat storage

Energy consumption

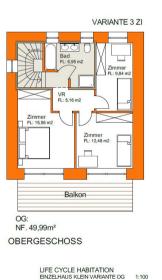
Table 1: energy consumption and saving potentials in Austrian households through LCH energy concept

electric loads in households	Median*	electricity LCH	electricity reduction to	thermal energy LCH (excl. heating)				
	kWh/a	kWh/a	%	kWh/a				
hot water heating	1612	0	0%	1612				
recirculation pump	347	347	100%	0				
freezer	329	0	0%	189				
lighting	298	149	50%	0				
cooking devices	291	29	10%	0				
cooling devices	263	0	0%	167				
dishwasher	222	50	22%	115				
heating incl. operating energy	220	10**	5%	6 kWh/m ² a***				
dryer	178	50	28%	264				
washing machine	175	40	23%	126				
total	3934 kWh	675 kWh	17%	2473 kWh				

^{*} data source: Statistik Austria

^{***} calculated energy demand for heating of the S-House

^{**} ventilation system with heat recovery, not universally valid



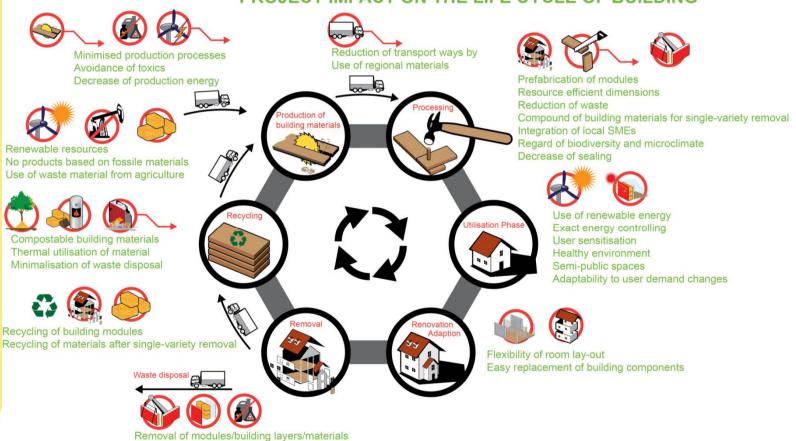
Building types

- Community centre
- Apartments
- Townhouses
- Compacted flat-roof buildings

Project time plan

Project duration: 51 month

Action numbe	Name of the action	1	H	111	IV	ı	H	111	IV	1	н	111	IV	1	11	111	IV	1	11	П	1	11	III IV
A. Pre	paratory actions:	- 12			_					- 5	_	:	- !		-		- 30	-		- 1	4 3		- 22
A.1	Innovationsentwicklung												П										
A.2	Architektonische Entwurfsplanung		Т								\neg	П	T					T	T		Т	П	
B. Imp	lementation actions:	550		9 64 V		520	All R	(4 - 1) (4 - 1)		62	-	S	0 (8)	1 10	- 4A	100	62	- 53	1 (5)	- 202	98 8 60 8	8 68 0 99	520
B.1	Einreichung der Prototypengebäude.	100						o o				П	П				Q.	Į.	T				
B.2	Technische Ausführungs- und Detailplanung der Prototypengebäude		Т									П	T					T	T		Т		
B.3	Grundlegende Infrastrukturanbindung	1		13				A 20		130			T	- 7			Ĵ	8		100			- 60
B.4	Ressourceneffiziente Fundamenterrichtung												T				11				П		
B.5	Hochbau - vorgefertigte Modulbauweise									•	•	•					ij.						
B.6	Hochbau - lasttragende Bauweise		П	П							•							T	T		Т	П	
B.7	Innovatives Energieversorgungssystem																	Ĭ			П		
C. Mor	itoring of the impact of the project actions:	- 50	-		_				- 12				_	-			-			- 100	-		-
C.1	Monitoring - Energieverbrauch																				Τ		
C.Z	Monitoring - Ressourcenverbrauch	200							•	•							Ĵ			3/3			- C
C.3	Qualitätssicherungsmaßnahmen														1	à	ĵ.						
D. Con	nmunication and dissemination actions:	- 00		_									_										
D.1	Projekt-Webseite							2 3										П					
D.2	Life+ InformationstafeIn									-Vi			T				Ĩ						
D.3	Teilnahme an Konferenzen, Präsentationen																						
D.4	Fachartikel																	T	T		Т	П	
D.5	Informations- und Disseminationsmaterial			-				-										Ī			T		Ü
D.6	Öffentlichkeitsarbeit	100				ĵ.		u s										ĵ.					
D.7	LIFE Cycle Habitation Experience Laboratory		Т										T								Т	П	
D.8	Laienbericht																	1					- 6
D.9	Policy Suggestions					Ĺ										3	jj.	Ī					- 0
E. Proj	ect management and monitoring of the project progress:	98											_	_							•		
E.1	Projektmanagement							П														100	96



Life cycle

Single-variety removal Avoidance of toxics

PROJECT IMPACT ON THE LIFE CYCLE OF BUILDING

Thank you for your attention!

www.lch.grat.at

DI(FH) Sören Eikemeier
Gruppe Angepasste Technologie, TU Wien
www.grat.at
contact@grat.at

