

# ENVIRONMENTAL BUILDING ASSESSMENT



Comparison of single family homes\*:

straw vers. brick (same U-values ~0,15 W/m<sup>2</sup>K)

- ► Fighting Climate change: Brick house is like the straw plus **500.000km car driving**
- Reducing primary energy demand, non renewable, brick house is like straw house plus <u>4.000 L oil</u>
- \* Production, repairing





### **ENVIRONMENTAL PRODUCT DECLARATION EPD**



Aggregation of environmental impact and resource demand for material production





### LIFECYCLE

| <b>Production</b>      |                     |           |            |           |                    |         |                |                | <b>E</b> n <b>EV</b> |                |                                |                               | disposal/ Recycling |           |                  |            |                                                                     |
|------------------------|---------------------|-----------|------------|-----------|--------------------|---------|----------------|----------------|----------------------|----------------|--------------------------------|-------------------------------|---------------------|-----------|------------------|------------|---------------------------------------------------------------------|
| Phases                 | A 1-3               |           |            | A 4-5     |                    |         |                |                | В 1-7                |                |                                |                               | C 1-4               |           |                  | D          |                                                                     |
|                        | Production          |           | erecting   |           | usage              |         |                |                |                      |                | End-of-life                    |                               | Outside system      |           |                  |            |                                                                     |
|                        | Rohstoffbeschaffung | Transport | Produktion | Transport | Errichtung/ Einbau | Nutzung | Instandhaltung | Instandsetzung | Austausch            | Modernisierung | Energieverbrauch im<br>Betrieb | Wasserverbrauch im<br>Betrieb | Rückbau/ Abriss     | Transport | Abfallverwertung | Entsorgung | Potential für<br>Wiederverwertung<br>Rückgewinnung und<br>Recycling |
| Module<br>DIN EN 15978 | A1                  | A2        | A3         | A4        | A5                 | B1      | В2             | В3             | B4                   | B5             | В6                             | В7                            | C1                  | C2        | C3               | C4         | D                                                                   |
|                        |                     |           |            |           |                    |         |                |                |                      |                |                                |                               |                     |           |                  |            |                                                                     |





### **Production of insulation materials**

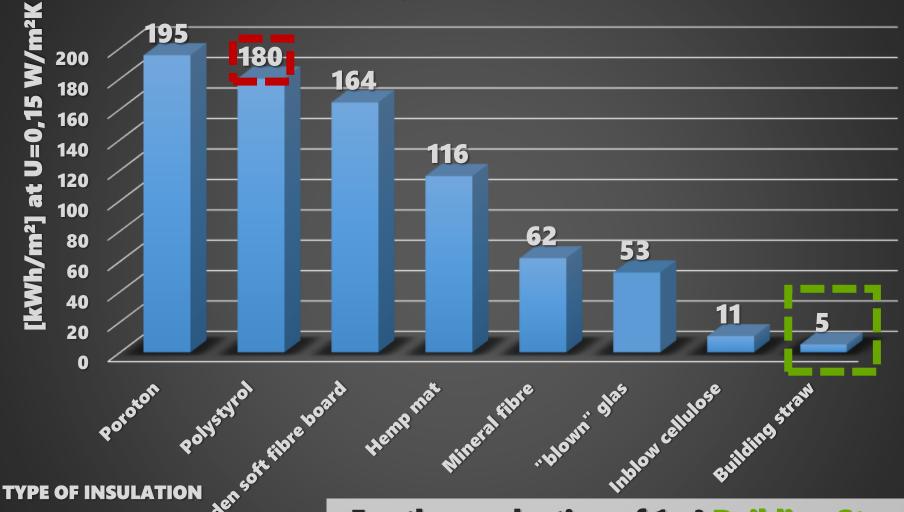
**Primary energy demand non renewable** 

### **Estimate:**

How much times more is needed for polystyrol than for straw (same U-Value)?

Correct answer: C. 36-times more for polystyrol.

**Possible answers** 


A 20x

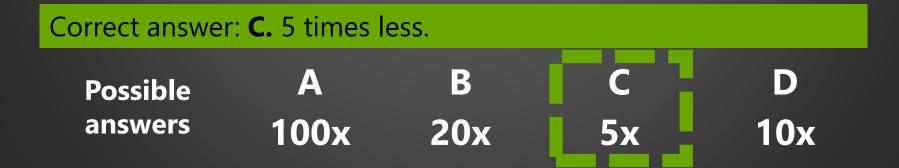
В 10х C 36x

D

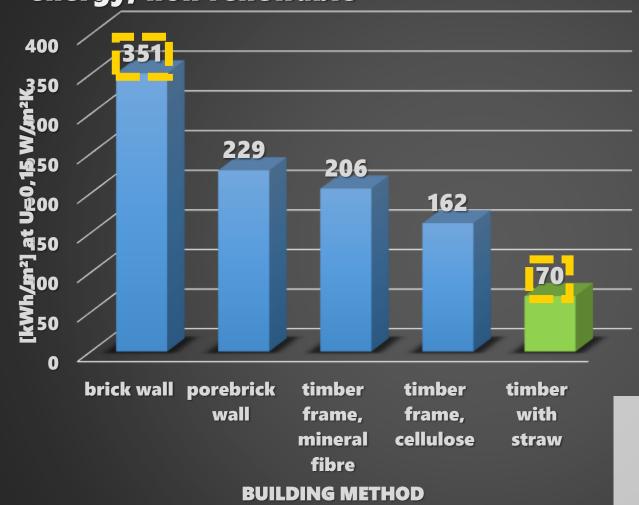
**2**x

### Production insulation material: Primary energy demand, non renewable




For the production of 1m<sup>2</sup> Building Straw with U-Value U=0,15 W/m<sup>2</sup>K 5 kWh PENRE are needed. 36-times less then for Polystyrol (180/5=36)

### **Production of walls**


**Primary energy demand non renewable** 

### **Estimate:**

How much times less is needed for the production of a straw wall (with the same U-Value) as for a brick wall?



### production of walls, different methods, Primary energy, non renewable

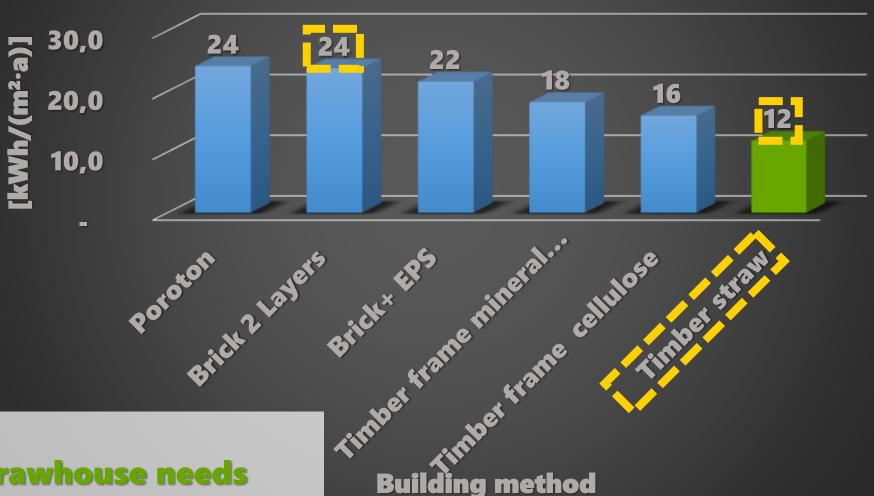


The straw insulated timber wall needs

5 times less energy

For production than a two layer brick wall

## Production of typical houses Primary energy demand non renewable


#### **Estimate:**

How much times less would straw house would need compared with a typical brick house (same U-Values)?

Correct Answer: C. Straw house would need 2 times less energy

Possible A B C D
answers 100x 20x 2x 10x

## Production of typical houses Primary energy demand non renewable



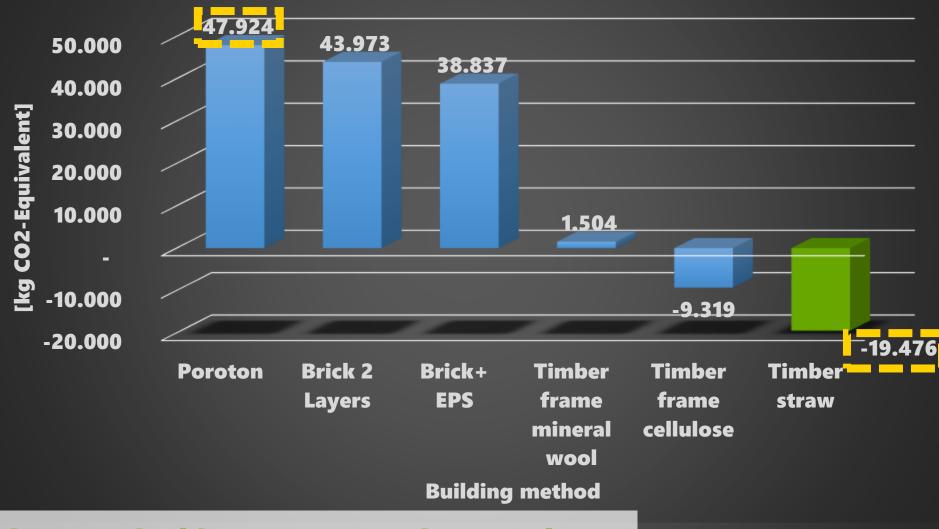
Strawhouse needs only <u>half</u> the amount of the brick house

## Production of house, Global warming potential

### **Ausgangssituation**:

Vergleich von sechs verschiedenen Einfamilienhausbauweisen: Emissionen durch Herstellung.

Production of typical Brickhouse emitates 47t CO<sub>2</sub> strawhouse takes 19t CO<sub>2</sub> out of the atmosphere.


### **Estimate:**

How far can you go with 5L-car( $\sim 120g$   $CO_2/km$ ) for difference?

Correct answer: A. over 500.000 km



#### Production of house, Global warming potential



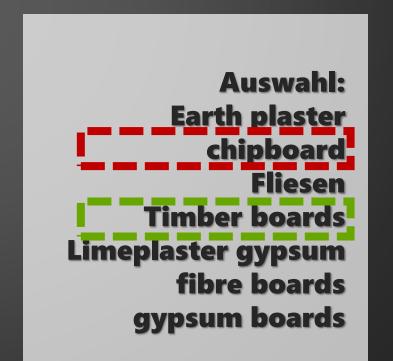
The straw building stores 19t, the typical one out brick emitates 47t. Difference: ca. 66t. With a 120g-Auto you would have to drive over 500.000km to emitate this amount.

## DEMAND of PENRE [kWh/a] for additional insulation from A+ to Passivhaus

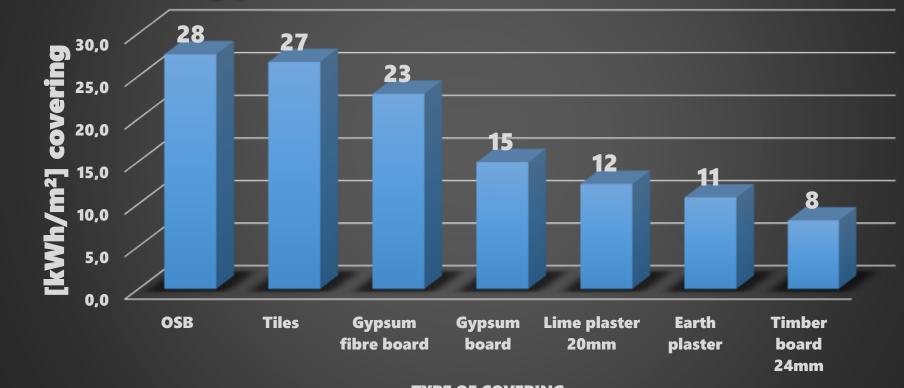


Δ for A+ to Passivhaus in conventional building is like 100 years heating (renewable)

# Production of claddings Primary energy demand, non renewable


#### **Estimate:**

Which cladding needs most, which one fewest?


**Correct Answer:** 

most: chipboard.

**Fewest Timber boards** 



# Production of coverings: Primary energy demand, non renewable



**TYPE OF COVERING** 

A chipboard need most. A timber board need fewest



### THANK YOU!



In de Masch 6, D- 21394 Südergellersen

Tel.: +49 4131 727 804

www.architekt-scharmer.de